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Abstract
A two-phase free boundary problem associated with the Burgers equation is
considered. The problem is reduced to a system of nonlinear integral equations
which is analysed and shown to have a unique solution. The system admits
a two-component shock solution which travels with the same velocity as that
of the free boundary. The stability analysis of such a solution shows the
existence of stability and instability regions according to different values of the
parameters characterizing the system.

PACS numbers: 02.60.Lj, 04.20.Ex
Mathematics Subject Classification: 35G25, 35J10

1. Introduction

Free boundary problems (FBP) are relevant both in mathematics and in physics. From the
mathematical point of view, the underlying complication of FBP involves not only solving the
given partial differential equations, but also finding the unknown motion of the free boundary.
Physically speaking, FBP arise in numerous contexts, e.g. surface dynamics in water waves,
the internal evolution of the boundary between immiscible liquids, the motion of the free
boundary between two states (e.g., Stefan problems), etc. For the state of the field of FBP up
to 1984 we refer to [1–4]; more recent developments are reported in [5].

The inherent difficulty in most of the mentioned FBP is that they require one to solve
a nonlinear system. In some cases it is possible to prove existence theorems (at least for
short time) but, usually, special explicit solutions cannot be obtained. More recently, in [6]
a one-phase Stefan problem for the Burgers equation was considered and an exact travelling
wave solution was obtained. In [6] the existence of the one-phase solution is proved for
short intervals of time. On the other hand, two-phase FBP are more complicated than their
one-phase counterparts and the theory is more elaborate.
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In this paper we concentrate on a particular nonlinear model which is well known in
mathematics and physics: the Burgers equation (cf equations (1a) and (b)). Such an equation
arises in weakly nonlinear gas dynamics [7]; it admits a linearization into the heat equation [8]
and therefore is amongst the class of ‘integrable’ [9] equations. The free boundary problem that
we study below corresponds to a one-dimensional,non-stationary flow of two weakly nonlinear
compressible fluids. We assume the two fluids to be immiscible, with different velocity fields
(excess of flow velocity over a sonic velocity), and different viscosity, connected by continuity
of velocity and a suitable energy balance condition. Because the Burgers equation can be
linearized into the heat equation, we have a natural correspondence with the well-known
Stefan problem of the heat equation. For this reason we call this free boundary problem a
Burgers–Stefan (BS) problem.

There are various significant differences between the systems (linear heat equation versus
Burgers equation) which we note and which require special attention. Most significantly,
the BS problem has a nonlinear convective term, arising from the governing fluidodynamic
equations, which does not appear in the classical Stefan problems.

Notably, an exact solution to the BS problem can be determined; as such, this is unusual
in the study of FBP where very few exact solutions are known. Moreover, we show how one
can determine the stability of this solution. More concretely, in this paper we formulate and
analyse a two-phase BS problem characterized by the following system of Burgers equations:

u1t = (
δu1x − u2

1

)
x

u1 = u1(x, t) (1a)

defined over the domain −∞ < x < s(t), t > 0 and

u2t = (
δ2u2x − u2

2

)
x

u2 = u2(x, t) (1b)

over the domain s(t) < x < +∞, t > 0, where

s(0) = b > 0. (1c)

Equations (1a) and (1b) have initial data given by

u1(x, 0) = ψ1(x) > 0 −∞ < x < b ψ1(b) = 0. (2a)

u2(x, 0) = ψ2(x) < 0 b < x < +∞ ψ2(b) = 0 (2b)

and the following set of boundary conditions:

u1(−∞, t) = α1 > 0 u2(+∞, t) = β2 < 0 (3a)

u1(s(t), t) = u2(s(t), t ) = k. (3b)

Equation (3b) in conjunction with a condition on the energy flux (see (3c)) is sufficient to
determine the motion of the free boundary s(t). In principle, k in (3b) could be a given function
of time. But, as in the linearized problem, here we will only discuss the fundamental case k
being constant.

In the above relations, δ j ( j = 1, 2) are positive constants related to the viscosity of the
two phases; α1, b and k are positive constants (α1, >k), β2 is a negative constant and the
unknown function s(t) describes the motion of the free boundary. The function s(t) has to be
determined together with uj (x, t) ( j = 1, 2). Besides (3b), the system is characterized by an
additional condition at the free boundary s(t), arising from energy consideration. The energy
balance across the free boundary can be written as

δu2x(s(t), t ) − 1
2u2

2(s(t), t) − δu1x(s(t), t ) + 1
2u2

1(s(t), t) = (p1 − p2)ṡ(t) (3c)

where p1 and p2 are the (constant) values of the pressure on the two sides of the boundary. Due
to (3b), the kinetic energy terms on the right-hand side of (3c) cancel out and we can rewrite
the above relation as

−λ1u1x(s(t), t) + λ2u2x(s(t), t) = ṡ(t) (3d )

where λj = (δj/p), p = p1 − p2.
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It is now worth noting that the Galilean transformations x − kt → x, uj − k → uj ( j = 1, 2)
leave equations (1a) and (1b) invariant while implying a trivial boundary datum in (3b). In
the following we can then set k = 0 in (3b) without loss of generality.

Our analysis is based on the method developed in [6] for the solution of the one-phase
Burgers–Stefan problem.

In the next section we reduce the two-phase BS problem to a system of coupled nonlinear
integral equations and then prove the existence and uniqueness of its solution for small intervals
of time. In section 3, we show that there is an explicit shock wave type solutions depending
on the two components (a two-component shock wave solution is an exact special solution)
of the two-phase BS problem, whose free boundary moves at the same velocity as the shock.
In the final section we address the issue of stability of such a solution: we show that there
exist regions of stability and instability of the shock wave according to different values of the
parameters which characterize the two components of the solution.

2. Solution of the two-phase BS problem

We begin our analysis by introducing the generalized Hopf–Cole transformation [6]

uj (x, t) = −vj (x, t)

/[
Cj (t) +

1

δj

∫ x

s(t)

dx ′ vj (x
′, t)

]
j = 1, 2 (4a)

vj (x, t) = Cj (t)uj (x, t) exp

[
− 1

δj

∫ x

s(t)

dx ′ uj (x
′, t)

]
. (4b)

with

Cj(0) = 1. (4c)

This transformation, with conditions (2) and (3), implies the relations

vj (x, 0) = ϕj(x) = ψj (x) exp

[
− 1

δj

∫ x

b

dx ′ ψj (x
′)
]

j = 1, 2 (5a)

with ϕ1(x) > 0, ϕ2(x) < 0 and ϕj(b) = 0,

vj (s(t), t) = Cj (t)uj (s(t), t) = 0 (5b)

−λ1
v1x(s(t), t )

C1(t)
+ λ2

v2x(s(t), t )

C2(t)
= ṡ(t). (5c)

The transformation (4a)–(4c) maps the system (1a)–(1c) into the following system for the
linear heat equation,

vjt = δjvjxx
j = 1, 2 (6)

with the compatibility conditions

Ċj (t) = −vjx
(s(t), t) j = 1, 2. (5d )

Thus the two-phase BS problem (1)–(3) is reduced to the two-phase Stefan problem for the
heat equation (6) with the initial data (5a), characterized by the boundary conditions at the free
boundary (5b)–(5d). We say that {vj (x, t) (j = 1, 2), s(t)} form a solution of the above Stefan
problem for all t < σ, 0 < σ < ∞, when: (a) vj (x, t) is a solution of (6) satisfying (5a)–
(5d ), they exist and are continuous together with their derivatives; (b) s(t) is a continuously
differentiable function for 0 � t < σ .



4310 M J Ablowitz and S De Lillo

In order to prove the existence and uniqueness of the solution for t < σ , we assume
that the initial data ψj (x) (j = 1, 2) given in (2a) and (2b) are continuous together with their
derivatives; moreover, they are bounded:

|ψ1(x)| < α1 |ψ2(x)| < |β2|
with α1 and β2 given by (3a).

Next we observe that the unknown functions Cj (t) entering the transformation (4a)–(4c)
satisfy the relation

λ1 ln C1(t) − λ2 ln C2(t) = s(t) − b (7a)

which is obtained from (5c) together with the compatibility condition (5d). Integrating (5d)
and substituting in (7a), we obtain

λ1 ln

[
1 −

∫ t

0
v1x(s(t

′), t ′) dt ′
]

− λ2 ln

[
1 −

∫ t

0
v2x(s(t

′), t ′) dt ′
]

= s(t) − b. (7b)

We now turn our attention to the solution of (6). To this end we introduce the fundamental
kernel of the heat equation

Kj(x − ξ, t − t ′) = 1

2
√

πδj

1√
t − t ′

exp

[
− (x − ξ)2

4δj (t − t ′)

]
j = 1, 2 (8)

and integrate Green’s identity for the heat equation

∂

∂ξ

(
Kj

∂vj

∂ξ
− vj

∂Kj

∂ξ

)
− ∂

∂t
(Kjvj ) = 0 j = 1, 2 (9)

over the domain −∞ < ξ < s(t ′) in the case j = 1 (s(t ′) < ξ < +∞ for j = 2), 0 < ε < t ′

< t − ε and let ε → 0. Using v(s(t ′), t ′) = 0 and Kj(x − ξ , 0) = δ(x − ξ ) we obtain

v1(x, t) =
∫ b

−∞
K1(x − ξ, t)ϕ1(x) dξ +

∫ t

0
K1(x − s(t ′), t − t ′)v1x(s(t

′), t ′) dt ′ (10a)

v2(x, t) =
∫ ∞

b

K2(x − ξ, t)ϕ2(x) dξ −
∫ t

0
K2(x − s(t ′), t − t ′)v2x(s(t

′), t ′) dt ′ (10b)

with s(t) given by (7b).
On the right-hand sides of (10a) and (10b) vjx(s(t), t ) (j = 1, 2) is unknown; it is then

convenient to take the x-derivative of both sides in (10a) and (10b) and take its limit as
x → s(t)− (x → s(t)+).

We then put zj (t) = vxj (s(t), t) (j = 1, 2) and finally obtain (cf [5])

z1(t) =
∫ b

−∞
K1(s(t) − ξ, t)ϕ′

1(ξ) dξ + 2
∫ t

0
K1x(s(t) − s(t ′), t − t ′)z1(t

′) dt ′ (11a)

z2(t) =
∫ ∞

b

K2(s(t) − ξ, t)ϕ′
2(ξ) dξ + 2

∫ t

0
K2x(s(t) − s(t ′), t − t ′)z2(t

′) dt ′ (11b)

with

λ1 ln

[
1 −

∫ t

0
z1(t

′) dt ′
]

− λ2 ln

[
1 −

∫ t

0
z2(t

′) dt ′
]

= s(t) − b. (11c)

Thus the solution of the Stefan problem (6), (5a)–(5d) has been reduced to the solution of the
system of coupled nonlinear integral equations (11a)–(11c).

Once the existence and uniqueness of the functions zj (t) ( j = 1, 2) is proved for
0 � t < σ , the existence and uniqueness of vj (x, t) ( j = 1, 2) then follows, via (10a)
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and (10b). The solution of the two-phase Burgers–Stefan problem (1)–(3) then exists and is
unique (for 0 � t < σ ) due to (4a), with Cj(t) obtained via (5b).

In order to analyse existence properties of z1(t) and z2(t) for 0 � t < σ , we denote by SM

the closed sphere ‖z‖ � M in the Banach space of functions z(t) continuous for 0 � t < σ ,
with the uniform norm ‖z‖ = l.u.b.|z(t)|. On the sphere SM we define the mappings

wj(t) = Tjzj (t) j = 1, 2 (12)

where T1z1 and T2z2 coincide with the right-hand sides of (11a) and (11b), respectively. We
first prove that Tj ( j = 1, 2) is a mapping of SM into itself.

From (11c) we obtain (see (A1))

|s(t)| � b + 2Mλσ (13)

with λ = λ1 + λ2 and 2Mσ < 1 (cf [7], p 161).
It then follows that

b � |s(t)| � b + 2Mλσ. (14)

From (11c) we also obtain (see (A2c))

|s(t) − s(t ′)| � 2Mλ|t − t ′|. (15)

We now consider the right-hand side of equation (12) in the case j = 1. It is shown in the
appendix (cf (A3)–(A5)) that

‖w1‖ = ‖T1z1‖ � 2A ebγ1 +
2M2λ√
πδ

3/2
1

√
σ (16)

where A ≡ (‖ψ ′
1‖ + α2

1

)
(cf (A3)) and γ1 = α1

δ1
.

We now define M as M = max(M1,M2), Mj : Mj = 1 + 2A ebγj (j = 1, 2) and take
σ < min(σ1, σ2), σ1: 2Mλσ1 < 1, σ2: 3M2λ

√
σ <

√
π(δ1)

3/2. It then follows from (16) that

‖w1‖ = ‖T1z1‖ � M. (17a)

Along the same lines it is possible to show that

‖w2‖ = ‖T2z2‖ � M. (17b)

(17a) and (17b) imply that the mappings T1 and T2 are closed.
Next, we prove that Tj ( j = 1, 2) is a contraction; i.e. given two solutions of (12) with

‖zj − z̄j‖ = d, d < 2M , it follows that ‖T1(zj − z̄j )‖ � ϑd with 0 < ϑ < 1.
To this end we denote by Bi appropriate positive constants and obtain from (11c) the

following relevant bounds (cf (A6a) and (A6b)):

|s(t) − s̄(t)| < B1dt (B1 = 2λ) (18a)

and

|ṡ(t) − ˙̄s(t)| < B2d
(
B2 = λ e(1+e2dσ )

)
. (18b)

We now consider the case j = 1. From equations (12) and (11a) we can write

w1 − w̄1 = H1 + H2 (19a)

H1 = 1√
πtδ1

∫ b

−∞
ϕ′

1(ξ)

[
exp

(
− (s(t) − ξ)2

4δ1t

)
− exp

(
− (s̄(t) − ξ2)

4δ1t

)]
dξ (19b)
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H2 = −
∫ t

0
dt ′ z1(t

′)
(s(t) − s(t ′))

δ1(t − t ′)
K1(s(t) − s(t ′), t − t ′)

+
∫ t

0
dt ′ z̄1(t

′)
(s̄(t) − s̄(t ′))

δ1(t − t ′)
K1(s(t) − s(t ′), t − t ′) (19c)

with K1(x − ξ, t − t ′) given by (8).
We derive in appendix A (cf (A7)) the following bound on H1:

|H1| <
A ebγ1

√
πδ1

B1d
√

σ ≡ B3d
√

σ . (20)

Next, the estimation of H2 is obtained by writing

|H2| � |V1| + |V2| + |V3| (21a)

V1 = −
∫ t

0
dt ′ (z(t ′) − z̄(t ′))

(s(t) − s(t ′))
δ1(t − t ′)

K1(s(t) − s(t ′), t − t ′) (21b)

V2 = −
∫ t

0
dt ′ z̄(t ′)

[
(s(t) − s(t ′))

δ1(t − t ′)
− (s̄(t) − s̄(t ′))

δ1(t − t ′)

]
K1(s(t) − s(t ′), t − t ′) (21c)

V3 = −
∫ t

0
dt ′z̄(t ′)

[
(s̄(t) − s̄(t ′))

δ1(t − t ′)

]
K1(s(t) − s(t ′), t − t ′)

×
[

1 − exp

{
(s̄(t) − s̄(t ′))2 − (s(t) − s(t ′))2

4δ1(t − t ′)

}]
. (21d )

In appendix A the following bounds are obtained (cf (A8)–(A10)):

|V1| <
B1Md

√
σ

√
πδ

3/2
1

≡ B4d
√

σ (22a)

|V2| <
B2Md

√
σ√

πδ
3/2
1

≡ B5d
√

σ (22b)

|V3| < B8d
√

σ (22c)

where B8 is defined in (A10).
Combining (22a)–(22c) we have from (21a)

|H2| < (B4 + B5 + B8)d
√

σ ≡ B9d
√

σ . (23)

From (19a), (20) and (23) we finally get

‖w1 − w̄1‖
d

< (B3 + B9)
√

σ ≡ B10
√

σ . (24)

If we choose σ to satisfy σ < min(σ1, σ2, σ3) with

B9
√

σ3 < 1 (25)

it then follows that T1 is a contraction operator on SM. Following the same lines it
can be proved that also T2 is a contraction operator in SM. We therefore conclude that
z1(t) = T1z1(t) and z2(t) = T2z2(t) exist and are unique fixed points of T1 and T2 in SM, for
0 � t < σ .

We have thus proved that the solution of the system of nonlinear integral equations (11a)–
(11c) exists and is unique for a small interval of time.

In the next section we turn our attention to an explicit, particular solution of the two-phase
BS problem.
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3. Two-component shock wave

We write the usual shock solution of (1a) compatible with (2a) and (3a); it reads

u1(x, t) = α1 +
(α2 − α1)[

1 + exp 1
δ1

(α2 − α1)(x − V1t − x ′
0)

] (26a)

with

V1 = α1 + α2 α2 < 0 < α1. (26b)

The corresponding solution of (1b) satisfying (2b) and (3a) reads

u2(x, t) = β1 +
(β2 − β1)[

1 + exp 1
δ2

(β2 − β1)(x − V2t − x ′′
0 )

] (27a)

with

V2 = β1 + β2 β2 < 0 < β1. (27b)

In the above relations α2 and β1 are constants to be determined.
We use (26a) ((27a)) on the interval −∞ < x < s(t) (s(t) < x < +∞) and require

u1(x, t) = 0 x > s(t) (u2(x, t) = 0, x < s(t)).

We now impose on u1(x, t) and u2(x, t) the condition at the free boundary (3b); we get

s(t) − V1t = x ′
0 +

δ1s
′
0

(α1 − α2)
(28a)

and

s(t) − V2t = x ′′
0 +

δ2s
′′
0

(β1 − β2)
(28b)

which imply that the shock solutions (26a) and (27a) are both moving with the same velocity
as the free boundary

ṡ(t) = V1 = V2 ≡ V. (28c)

Next, the boundary condition (3c) implies

−λ1

δ1
α1α2 +

λ2

δ2
β1β2 = V. (29)

Equations (28c) and (29), when (26b) and (27b) are also used, fix the value of the constants
α2, α1 and V:

α2 = α1
(
1 − λ2

δ2
β2

)
+ λ2

δ2
β2

2(
λ2
δ2

β2 − λ1
δ1

α1 − 1
) (30a)

β1 =
β2

(
1 + λ1

δ1
α1

) − λ1
δ1

α2
1(

λ2
δ2

β2 − λ1
δ1

α1 − 1
) (30b)

V =
λ2
δ2

β2
2 − λ1

δ1
α2

1(
λ2
δ2

β2 − λ1
δ1

α1 − 1
) . (30c)
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Due to (3a), it is immediate to verify that (30a) and (30b) imply α2 < 0 and β1 > 0
respectively; also, it follows from (30c) that V > 0 provided

λ2

δ2
β2

2 <
λ1

δ1
α2

1 .

Finally, via (28a) and (28b), the position of the boundary is fixed as

exp

(
− s′

0

δ1

)
= |α2|

α1
(31)

and

exp

(
− s′′

0

δ2

)
= |β2|

β1
. (32)

4. Stability analysis and results

In order to study the stability of the particular solution {uj (x, t) (j = 1, 2), s(t)} obtained in
the previous section, we consider small perturbations affecting both the shocks and the motion
of the free boundary. We set

uj = ûj + u′
j j = 1, 2 (33)

s(t) = ŝ(t) + s′(t) (34)

where ûj (j = 1, 2) is the shock solution satisfying ûj (ŝ(t), t ) = 0 and u′
j , s′ are small

perturbations.
By linearizing (1a) and (1b) around ûj , we get

ϑjt = δjϑjxx − 2ûjϑjx j = 1, 2 (35)

where the position u′
j = ϑjx has been made.

The boundary conditions (3a) and (3b), together with (33) and (34), give the conditions
for ϑ j (x, t) at the free boundary:

δ1

α1α2
ϑ1x(ŝ(t), t) = δ2

β1β2
ϑ2x(ŝ(t), t) (36a)

and
δ1

α1α2

∂

∂t
ϑ1x| x=ŝ(t) =

[
(λ2ϑ2xx − λ1ϑ1xx) + V

(
λ2

δ2
ϑ2x − λ1

δ1
ϑ1x

)]
x=ŝ(t)

. (36b)

The change of variables

ϑj(x, t) = ϑj (X, t) X = x − V t j = 1, 2 (37)

maps (35) into

ϑjt = δjϑjXX − (2ûj − V )ϑjX j = 1, 2 (38)

and (36a) and (37b) into

δ1

α1α2
ϑ1X(0, t) = δ2

β1β2
ϑ2X(0, t) (39a)

and
δ1

α1α2
(ϑ1tX − V ϑ1XX)| x=0 =

[
(λ2ϑ2XX − λ1ϑ1XX) + V

(
λ2

δ2
ϑ2X − λ1

δ1
ϑ1X

)]
X=0

(39b)

respectively.
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We now solve (38) with the initial condition

ϑj(X, 0) = fj (X) j = 1, 2 (39c)

and the asymptotically vanishing condition ϑ1 → 0 (ϑ2 → 0) as X → −∞ (X → +∞).
In terms of the Laplace transform

ϑ̂j (X, q) =
∫ ∞

0
dt e−qtϑj (X, t) j = 1, 2 (40)

from (38) and (39a)–( 39c) we get the solutions

ϑ̂1(X, q) = exp(−P1(X))

[
c1 ek,X +

∫ X

0

ek1(X−ξ)

2k1
F1(ξ) dξ −

∫ X

−∞

e−k1(X−ξ)

2k1
F1(ξ) dξ

]
(41a)

and

ϑ̂2(X, q) = exp(−P2(X))

[
c2 e−k2X −

∫ X

0

e−k2(X−ξ)

2k2
F2(ξ) dξ −

∫ ∞

X

ek2(X−ξ)

2k2
F2(ξ) dξ

]
(41b)

with

Pj (X) =
∫ X

0

(
V

2
− ûj (X

′)
)

dX′ j = 1, 2 (41c)

k1 =
(

1

4δ2
1

(α1 − α2)
2 +

q

δ1

)1/2

(41d )

k2 =
(

1

4δ2
2

(β1 − β2)
2 +

q

δ2

)1/2

(41e)

and

Fj (X) = −fj (X) exp(Pj (X)) j = 1, 2. (41f )

c1 and c2 in (41a) and (41b) have to be determined via the boundary conditions (39a) and
(39b).

The small perturbation u′
j (X, t), j = 1, 2, is finally obtained by inverting (41a) and

(41b) and taking the x-derivative. When the large time behaviour of u′
j (X, t) is considered,

we observe that all the contributions coming from the integral terms of (41a) and (41b) are
asymptotically vanishing as t → ∞, since the branch points qj of the solution are real and
negative. We therefore conclude that the only possible source of asymptotically non-vanishing
contributions to u′

j (X, t) is determined by the positive singularities of c1 and c2.
When the boundary conditions (39a) and (39b) are imposed on (41a) and (41b), one

obtains for c1 and c2 a system of the form

A11c1 + A12c2 = 0 (42a)

A21c1 + A22c2 = H (42b)

where Aij and H (i = 1, 2 and j = 1, 2) depend on the variable q, and on the parameters kj, λj,
δj, α1 and β2. Their explicit form is given in appendix B.
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1 = 2,       2 = -0.1 

stable    unstable 

0 1 2 3 4 R

1 = 2,       2 = -0.5 

stable    unstable 

0 1 2 3 4 R

βα

βα

Figure 1. Regions of stability and instability of the shock solution are sketched for different values
of the parameters (α1, β2) versus the ratio R = λ2

δ2
/

λ1
δ1

.

The determinant � of the system (42a)–(42b) (� = A11 A22 − A21 A12) can be evaluated
as a function of q for different values of the parameters λj, δj, α1, β2.

The zeros of � (for q positive) determine the instability of the shock solution ûj (j = 1, 2)

with respect to the small perturbation u′
j .

The results of numerical computations indicate that the behaviour of � as a function of
q is strongly influenced by the values of the parameters λj, δj, α1 and β2. On the other hand,
the results of [6] show that the shock wave is a stable solution of the one-phase Burgers–Stefan
problem. Such a solution can be recovered from (30a)–(30c) in the limit λ2

δ2
|β2| � λ1

δ1
α1 with

|β2| small.
The result of the numerical computations is shown in figure 1, where regions of stability

and instability of the shock wave are indicated for two sets of values (α1, β2) as a function of
the ratio R = λ2

δ2

/
λ1
δ1

.

For the first set of values we choose α1 = 2, β2 = −0.1, λ2
λ1

= 0.1; for the second set

we fix instead α1 = 2, β2 = −0.5, λ2
λ1

= 4. We see from figure 1 that the shock solution for
the first set of parameters is stable in the region 0 � R � R0, R0

∼= 2, and unstable for R >

R0; for the second set the stability region corresponds instead to 0 � R � R1, R1
∼= 4, and

instability is determined by R � R1. In both cases the velocity V given by (30c) is positive as
long as there holds the condition λ2

δ2
β2

2 < λ1
δ1

β2
1 .

V will eventually become negative in the instability regions when the ratio R is increased
sufficiently so that the previous inequality is not satisfied anymore. Thus the velocity need not
be of any fixed sign in order to have stability.
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Appendix A

In the following we derive some relevant inequalities of section 2. We start with the estimate
of s(t); by introducing the notation ξj (t) = ∫ t

0 zj (t
′) dt ′, j = 1, 2, we obtain from (11c)
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|s(t)| � b +
2∑

j=1

λj |ln(1 − ξj (t))| � b + 2
2∑

j=1

λj |ξj (t)|

� b + 2λ1

∫ σ

0
|z1(t

′)| dt ′ + 2λ2

∫ σ

0
|z2(t

′)| dt ′ � b + 2λMσ (A1)

where λ = λ1 + λ2 and 2Mσ < 1 (cf [7], fg |6|).
In order to prove (15) we use again (11c) and write

s(t) − s(t ′) = λ1[ln(1 − ξ1(t)) − ln(1 − ξ1(t
′))] − λ2[ln(1 − ξ2(t)) − ln(1 − ξ2(t

′))]
(A2a)

where t is |ξj (t)| < 1/2, j = 1, 2.
We then expand in Taylor series the right-hand side of (A2a) and obtain

|ln(1 − ξj (t)) − ln(1 − ξj (t
′))| �

∣∣∣∣∣
∞∑

n=1

(
ξn
j (t ′) − ξn

j (t)
)

n

∣∣∣∣∣ � |ξj (t
′) − ξj (t)|

∞∑
n=0

(
1

2

)n

� 2|ξj (t
′) − ξj (t

′)| j = 1, 2. (A2b)

Next we consider the norm ||W1|| and prove relation (16). From (5a) we observe that

|ϕ′
1(x)| �

∣∣ψ ′
1(x) + ψ2

1 (x)
∣∣ exp

(
1

δ1

∫ b

x

ψ1(x
′) dx ′

)

�
(∥∥ψ1

1

∥∥ + α2
1

)
exp

(
(b − x)

α1

d1

)
≡ A exp

(
(b − x)

α1

d1

)
. (A3)

Moreover, we note that the two terms on the right-hand side of (11a) satisfy

2

∣∣∣∣
∫ b

−∞
k1 (s (t) − ξ, t) ϕ′

1 (ξ) dξ

∣∣∣∣
� A√

πδ1t
exp

(
bα1

δ1

) ∫ b

−∞
exp

(
(s (t) − ξ)2

4δ1t

)
exp

(−α1ξ

δ1

)
dξ

� 2A ebγ1 (γ1 = α1/δ1) (A4a)

1

2
√

π

1

δ
3/2
1

∣∣∣∣
∫ t

0

(s(t) − s(t ′))
(t − t ′)3/2

exp

[
− (s(t) − s(t ′))2

4δ1(t − t ′)

]
z1(t

′) dt ′
∣∣∣∣

� M

2
√

π

1

δ
3/2
1

∫ t

0

|s(t) − s(t ′)|
(t − t ′)3/2

� M2λ
√

πδ
3/2
1

√
σ . (A4b)

When the above relations are used, from (12) and (11a) we finally get

‖w1‖ � 2A ebγ1 +
2M2λ√
πδ

3/2
1

√
σ . (A5)

In order to prove (18a) and (18b) we consider (11c) and write

s(t) − s̄(t) = λ1[ln(1 − ξ1(t)) − ln(1 − ξ̄1(t))] − λ2[ln(1 − ξ2(t)) − ln(1 − ξ̄2(t))].

We now make use of the inequality

|ln(1 − ξj (t)) − ln(1 − ξ̄j (t))| � 2

∣∣∣∣
∫ t

0
(zj (t

′) − z̄j (t
′)) dt ′

∣∣∣∣ j = 1, 2

and obtain

|s(t) − s̄(t)| � 2(λ1 + λ2) dt < B1dσ B1 ≡ 2λ.
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Next we consider the difference

ṡ(t) − ˙̄s(t) =
∑
j=1,2

λj [z̄j (t) exp(−ln(1 − ξ̄j (t))) − zj (t) exp(−ln(1 − ξj (t)))]

=
∑
j=1,2

λj exp(−ln(1 − ξ̄j (t)))

[
(z̄j (t) − zj (t))

+ zj (t)

(
1 − exp

(
ln

(1 − ξ̄j (t))

(1 − ξj (t))

))]
(A6a)

and use the inequalities ln(1 − ξj (t))| � 2|ξj (t)| � 1 and |1 − e−Q| � |Q| e|Q| where is

Q = − ln
[ (1−ξ̄j (t))

(1−ξj (t))

]
.

We finally get

|ṡ(t) − ˙̄s(t)| � e

2∑
j=1,2

λj [d + 2M|ξj (t) − ξ̄j (t)| exp(2|ξj (t) − ξ̄j (t)|)]

� eλd(1 + 2Mσ e2dσ ) � B2d (A6b)

with B2 = λe(1 + e2dσ ) and 2Mσ < 1. Our final task is to derive the bounds on |H1| and |H2|.
We start with (19b) and write

|H1| � A ebγ1

√
πtδ1

∫ b−ξ0

b−ξ̄0

exp

(
− y2

4δ1t

)
dy

where ξ0 = s(t)−2tγ1, ξ̄0 = s̄(t)−2tγ1 and (A3) has been used. The above relation together
with (A6a) implies

|H1| � A ebγ1

√
πtδ1

|s(t) − s̄(t)| <
A ebγ1

√
πtδ1

B1d
√

σ ≡ B3d
√

σ . (A7)

We now consider (23b) together with (A2c); we get

|V1| � Mλd√
πtδ1

∣∣∣∣
∫ t

0

1

δ1
exp

[−(s(t) − s(t ′))2

4δ1(t − t ′)

]
dt ′√
t − t ′

∣∣∣∣ <
MB1d√
πδ

3/2
1

√
σ ≡ B4d

√
σ . (A8)

Next, from (23c) we can write

|V2| � 1

2
√

π

1

δ
3/2
1

M

∫ t

0

∣∣∣∣ (s(t) − s̄(t)) − (s(t ′) − s̄(t ′))
(t − t ′)

∣∣∣∣ dt ′√
t − t ′

� 1

2
√

π

1

δ
3/2
1

∫ σ

0
|ṡ(ϑ) − ˙̄s(ϑ)| dt ′√

t − t ′
<

MB2d
√

σ
√

πδ
3/2
1

≡ B5d
√

σ (A9)

where the mean value theorem and (A6b) have been used.
Finaly, for the estimate of V3 we put in (23d)

Q̃ = − [(s̄(t) − s̄(t ′))2 − (s(t) − s(t ′))2]

4δ1(t − t ′)

= − 1

4δ1(t − t ′)
[(s̄(t) − s(t)) − (s̄(t ′) − s(t ′))][(s̄(t) − s̄(t ′)) − (s(t) − s(t ′))].

By using (A2c) and (A6a) we get

|Q̃| � B1Mλ dt|t − t ′|
δ1|t − t ′| <

B1Mλ

δ1
dσ ≡ B6 dσ.
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On the other hand, from (A2c) it also follows that

|Q̃| � 2M2λ2

δ1|t − t ′| |t − t ′|2 <
2M2λ2

δ1
σ <

Mλ

δ1
≡ B7 (2Mλσ < 1).

From (23d ) we then get

|V3| � 1

2
√

π

1

δ
3/2
1

M

∫ t

0

∣∣∣∣ s̄(t) − s̄(t ′)
(t − t ′)

∣∣∣∣ |1 − e−Q̃|√
t − t ′

dt ′

� 2M2λ√
πδ

3/2
1

|Q̃| e|Q̃|√σ <
MB6 eB7

√
πδ

3/2
1

d
√

σ

which gives (24c)

|V3| < B8d
√

σ

(
B8 = MB6 eB7

√
πδ

3/2
1

)
.

Appendix B

In the system (42a)–(42b) the coefficients Aij have the form

A11 = δ1K1

α1α2
− V

2α1α2

A12 = δ2K2

β1β2
+

V

2β1β2

A21 = −3

2

V

α1α2
q +

δ1K1

α1α2
q +

V 2K1

α1α2
+

λ1q

δ1
− V

(
1

δ1
+

δ1γ1

α1α2
+

V 2

4δ1α1α2

)

A22 = −λ2

δ2
q

with K1 and K2 given by (41d ) and (41e); moreover it is

H = − V δ1

α1α2
f1(0) +

δ1

α1α2
f ′

1(0) + λ1f1(0) − λ2f2(0).
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